Food Technology Neophobia Scale and Food Innovations Technology: Nutrition Needs & Business alignment for Next Normal
La Escala de Neofobia de Tecnología Alimentaria y la Innovación Tecnológica de Alimentos: Alineación de las Necesidades de Nutrición Alimentaria y los Negocios para la Nueva Normalidad
Resumen
Purpose: A proposal framework based on two recognized constructs over food innovations technology (FINT) and food technology neophobia scale (FTNS) involving consumers' nutrition needs and the businesses' opportunities. Methodology: Revision of literature about FINT-FTNS, post-COVID nutrition needs, and businesses with a questionnaire applied to 401 regular consumers (Oct-Dic-2021). Results: FINT-FTNS, suggests developing businesses based on the inclusion of indicators such as information media, the intention to purchase, the type of food technology with benefits to be consumed, and regulation policies to protect the consumer. Limitations: The snowball self-report sampling method may be a source of biased survey results because the survey is only in the Mexican environment, and it could be considered a limitation in the research scope. The food industry's innovation models indicate that more research is necessary to adapt external knowledge with socio-economic and institutional change. Conclusions: For the final framework's sides (FINT and FTNS), we have determined several suggestions based on nutritional, eating patterns, innovation, technology, and marketing concepts to improve the framework for business applications to foster a healthy food intake against chronic diseases for the next normal, to complement this research.
Palabras clave:
contemporary food, food innovations technology, food technology neophobia, consumers nutrition condition, business, COVID-19, next normalAbstract
Objetivo: un modelo como propuesta basado en dos constructos reconocidos sobre la innovación tecnológica de alimentos (FINT) y la escala de neofobia de tecnología alimentaria (FTNS) que involucra las necesidades nutricionales de los consumidores y las oportunidades de las empresas.
Metodología: revisión de literatura sobre FINT-FTNS, las necesidades nutricionales posteriores a COVID y la generación de negocios con un cuestionario aplicado a 401 consumidores habituales (Jul-Sep de 2021). Resultados: el modelo FINT-FTNS, sugiere desarrollar negocios a partir de la inclusión de indicadores como medios de información, intención de compra, tipo de tecnología alimentaria con beneficios a consumir y políticas de regulación para proteger al consumidor. La originalidad de la investigación se basa en un modelo integral FINT-FTNS final para desarrollar negocios. Limitaciones: el método de muestreo de autoreporte “bola de nieve”puede ser una fuente sesgada de resultados porque la encuesta sólo se levantó en el entorno mexicano. Los modelos de innovación de la industria alimentaria indican que se necesita más investigación para adaptar el conocimiento externo al cambio socioeconómico e institucional. Conclusiones: para ambos lados del modelo final (FINT y FTNS), se determinaron varias sugerencias basadas en conceptos nutricionales, de innovación, tecnología y mercadotecnia para mejorar el modelo en aplicaciones de negocios fomentando una ingesta de alimentos saludables contra enfermedades crónicas para la próxima normalidad.
Keywords:
alimentación contemporánea, tecnología de innovaciones alimentarias, neofobia de tecnología alimentaria, estado nutricional de los consumidores, negocios, COVID-19, nueva normalidadDescargas
Referencias bibliográficas
Accenture (2018). Data Veracity and the Future of the Digital Economy. Mar. 8-2018. Accenture. Retrieved from https://www.accenture.com/nl-en/blogs/insights/data-veracity-and-the-future-of-the-digital-economy
Aiyar, A., Pingali, P. (2020). Pandemics and food systems-towards a proactive food safety approach to disease prevention & management. Food Security, 12, 749-756. doi: https://doi.org/10.1007/s12571-020-01074-3
Albertsen, L., Wiedmann, K. P., and Schmidt, S. (2020). The impact of innovation-related perception on consumer acceptance of food innovations-Development of an integrated framework of the consumer acceptance process. Food Quality and Preference 84, 1-11. doi: https://doi.org/10.1016/j.foodqual.2020.103958
Anderson, J., and Rainie, L. (2017). The Future of Truth and Misinformation Online.Oct.1 Pew Center. Retrieved from https://www.pewresearch.org/internet/2017/10/19/the-future-of-truth-and-misinformation-online/
Anderson Ch. A. M., Thorndike, A. N., Lichtenstein, A. H., Van Horn, L., Kris-Etherton, P. M., Foraker, R., and Spees, C. (2019). Circulation, 139 (23), 1025-1032. Retrived from https://www.ahajournals.org/doi/epub/10.1161/CIR.0000000000000686
Bacarella, S., Altamore, L., Valdesi, V, Chironi, S., and Ingrassia, M. (2015). Importance of food labeling as a means of information and traceability according to consumers. Advances in Horticultural Science, 29(2-3), 145-151. doi: https://doi/org/10.13128/ahs-22695
Balakrishnan, J., and Foroudi P. (2020). Does Corporate Reputation Matter? Role of Social Media in Consumer Intention to Purchase Innovative Food Product. Corporate Reputation Review 23, 181-200. doi: https://doi.org/10.1057/s41299-019-00078-w
Bedock, D., Lassen, P. B., Mathian, A., Moreau, P., Couffignal, J., Ciangura, C., Poitou-Bernert, Ch., Jeannin, A-C., Mosbah, H., Fadlallah, J., and Armoura, Z. (2020). Clinical Nutrition 40, 214-219. doi: https://doi.org/10.1016/j.clnesp.2020.09.018
Bermoy,N.N.B, De Guzmán, J.J.J., De Guzmán, J.L., Dela Vega, S.K.P., Hernández, L., Ignacio M.T.B,…Francisco, Ch.D.D. (2021). Influence of Social Media as a Marketing Platforms for Food-related Products in the New Normal. International Journal of Academic Multidisciplinary Research 5(1), 106-111. https://www.researchgate.net/profile/Christopher-Francisco/publication/348930234_Influence_of_Social_Media_as_a_Marketing_Platforms_for_Food-_related_Products_in_the_New_Normal/links/6017c85d299bf1b33e3d5ac4/Influence-of-Social-Media-as-a-Marketing-Platforms-for-Food-related-Products-in-the-New-Normal.pdf
Bigliardi, B., Ferraro, G., Filipelli, S., and Galati, F. (2020). Innovation Models in Food Industry: A Review of the Literature. Journal of Technology Management & Innovation 15 (3). doi: http://dx.doi.org/10.4067/S0718-27242020000300097
Busse, M., and Siebert, R. (2018). The role of consumers in food innovation processes. European Journal of Innovation Management, 21(1), 20-43. doi: https://doi.org/10.1108/EJIM-03-2017-0023
Butler, M.J., and Barrientos, R.M. (2020).The impact of nutrition on COVID-19 susceptibility and long-term consequences. Brain, Behavior and Immunity, 87, 53-54. doi: https://doi.org/10.1016/j.bbi.2020.04.040
Capiola, A., and Raudenbush, B. (2012). The effects of food neophobia and food neophilia on diet and metabolic processing. Food and Nutrition Sciences, 3(10), 1397-1403. doi: http://dx.doi.org/10.4236/fns.2012.310183
Comittee on World Food Security (CFS, 2020). Impacts of COVID-19 on food security and nutrition: developing effective policy responses to address the hunger and malnutrition pandemicCommittee on World Food Security. Retrieved from http://www.fao.org/3/cb1000en/cb1000en.pdf
Chen, Q., and Anders, S. (2013). Measuring consumer resistance to a new food technology: A choice experiment in meat packaging. Food Quality and Preference 28 (2). 419-428. doi: https://doi.org/10.1016/j.foodqual.2012.10.008
Cillo, V., Rialti, R., Bertoldi, B., and Ciampi, F. (2019). Knowledge management and open innovation in agri-food crowdfunding. British Food Journal 121(1), 242-258. doi: https://doi.org/10.1108/BFJ-07-2018-0472
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. USA: Routledge.
Cox, D.N., and Evans, G. (2008). Construction and validation of a psychometric scale to measure consumers’ fears of novel food technologies: The food technology neophobia scale. Food Quality and Preference 19, 704-710. doi: https://doi.org/10.1016/j.foodqual.2008.04.005
Crawford, E. (2021). Frozen innovations that blend convenience, nutrition hel category even as pandemic wanes. Retrieved from https://www.foodnavigator-usa.com/Article/2021/06/10/Frozen-innovations-that-blend-convenience-nutrition-help-category-grow-even-as-pandemic-wanes?utm_source=copyright&utm_medium=OnSite&utm_campaign=copyright
Damsbo-Svendsen, M., Frost, M. B., and Olsen, A. (2017). A review of Instruments Developed to Measure Food Neophobia. Apetite, 113, 358-367. doi: https://doi.org/10.1016/j.appet.2017.02.032
Diamantopoulos, A., Sarstedt, M., Fuchs, C., Kaiser, S., and Wilczynski, P. (2012). Guidelines for choosing between multi-item and single-item scales for construct measurement: A predictive validity perspective. Journal of the Academy of Marketing Science, 40, 434–449. doi: https://doi.org/10.1007/s11747-011-0300-3
Dijsktra, T. K., and Hanseler, J. (2015). Consistent Partial Least Squares Path Modeling. MIS Quarterly, 39(2), 297-316. Retrieved from https://misq.org/consistent-partial-least-squares-path-modeling.html
Dijkstra, T. K., and Henseler, J. (2015B). Consistent and asymptotically normal PLS estimators for linear structural equations. Computational Statistics & Data Analysis 81, 10-23. doi: https://doi.org/10.1016/j.csda.2014.07.008
Dallas Morning News (DMN, 2013). The dangers of salt and sugar and how to protect yourself. Retrieved from https://www.dallasnews.com/news/healthy-living/2013/04/15/the-dangers-of-salt-and-sugar-and-how-to-protect-yourself/
Drolet, A. L., and Morrison, D. G. (2001). Do we really need multiple-item measures in service research? Journal of service research 3, 3 (2001), 196-204. doi: https://doi.org/10.1177/109467050133001
Eschenbacher, S., and Jasso, C. (2021). Factbox: Mexico's obesity epidemic. Retrieved from https://www.reuters.com/world/americas/mexicos-obesity-epidemic-2021-06-16/
Food and Agriculture Organization of the United Nations (FAO, 2020). Food systems and COVID-19 in Latin America and the Caribbean: Food consumption patterns and malnutrition. Bulletin 10. Santiago, Food and Agriculture Organization of the United Nations and Economic Commission for Latin America and the Caribbean. doi: https://doi.org/10.4060/cb0217en
Flavors and Botanicals (F&B, 2021). Trend vs. Fashion: which is the best to follow when launching food and beverages? March.21-2021.Flavors & Botanicals. https://www.duasrodas.com/blog/en/trends/trend-vs-fashion-best-to-follow/
Food Navigator.com (FNV, 2018). What is needed to bridge Europés food innovation gap? Feb.26-2018. Retrieved from https://www.foodnavigator.com/Article/2018/02/26/What-is-needed-to-bridge-Europe-s-food-innovation-gap
Fornell, C. l., and Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. Retrieved from https://www.jstor.org/stable/3151312
Franke, G., and Sarstedt, M. (2019). Heuristics versus statistics in discriminant validity testing: A comparison of four procedures. Internet Research 29(3), 430-447. doi: https://doi.org/10.1108/IntR-12-2017-0515
Galanakis, Ch. M. (2017). Nutraceutical and Functional Food Components. Effects of Innovatives Processing Techniques, USA: Academic Press. An imprint of Elsevier.
Galanakis, Ch. M. (2019). Innovations in Traditional Foods. Woodhead Publishing. USA: An imprint of Elsevier.
Global Burden of Disease (GBD, 2017). Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017 .Lancet, 392, 1923-1994. doi: https://doi.org/10.1002/cncr.33476
Guerrero, L., Guardia, M. D., Xicola, J., Verbeke, W., Vanhonacker, F., Zakowska-Biemans, S. Sajdakowska, M., Sulmont-Rossé, C., Issanchou, S., Contel, M., Scalvedi, M. L., Granli, B. S., and Hersleth, M. (2009). Consumer-driven definition of traditional food products and innovation in traditional foods. A qualitative cross-cultural study. Appetite 52(2), 345-354. https://doi.org/10.1016/j.appet.2008.11.008
Guimaraes, J. T., Balthazar, C. F., Silva, R., Rocha, R. S., Graca, J. S., Esmerino, E. A., Silva, M. C., Santana, A. S., Duarte, M. C., Freitas, M. Q., and Cruz, A. G. (2020). Impact of probiotics and prebiotics on food texture. Innovative Food Science and Emerging Technologies 33, 38-44. doi: https://doi.org/10.1016/j.cofs.2019.12.002
Guiné, R. P. F., Florenca, S. G., Barroca, M. J., and Anjos, O. (2020). The Link between the Consumer and the Innovations in Food Product Development. Foods, 9, 2-22. doi: https://doi.org/10.3390/foods9091317
Hair, J. F., Hult, G. T. M., Ringle, C. M., and Sarstedt, M. (2017). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). 2nd. USA: Ed. Sage.
Hair, J. F., Sarstedt, M. Ringle, C. M., and Gudergan, S. P. (2017b). Advanced issues in partial least squares structural equation modeling. USA: Sage,
Hair, J. F., Jr. Black, W. C., Babin, B. J., and Anderson, R. E. (2019). Multivariate Data Analysis 7th ed. Cengage.
Hair, J. F., Risher, J. J., Sarstedt, M., and Ringle, C. M. (2019b). When to use and how to report the results of PLS-SEM. European Business Review 31(1), 2-24. Retrieved from https://www.emerald.com/insight/content/doi/10.1108/EBR-11-2018-0203/full/html
Harastani, R., James, L. J., Walton, J., and Woolley, E. (2020). Tackling obesity: A knowledge-base to enable industrial food reformulation. Innovative Food Science and Emerging Technologies 64, 1-6. doi: https://doi.org/10.1016/j.ifset.2020.102433
He, X., Deng, H., and Hwang, H. M. (2019). The current application of nanotechnology in food and agriculture. Journal of Food and Drug Analysis, 27(1), 1-21. doi: https://doi.org/10.1016/j.jfda.2018.12.002
Henseler, J., Ringle, C., and Sarstedt, M. (2012). Using partial least squares path modeling in international advertising research: Basic concepts and recent issues. In S. Okasaki (Ed.), Cheltenham. Handbook of Research in international Advertising. Cheltenham, UK: Edward Elgar.
Henseler, J., Dijkstra, T.K., and Sarstedt, M. (2014). Common beliefs and reality about PLS: Comments on Rönkkö and Evermann (2013). Organizational Research Methods 17(2), 182-209. doi: https://doi.org/10.1177/1094428114526928
Henseler, J., Ringle, C. M., and Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43, 115-135. doi: https://doi.org/10.1007/s11747-014-0403-8
Hollar, D., Paxton-Aiken, A., and Fleming, P. (2013). Exploratory validation of the Fruit and Vegetable Neophobia Instrument among third- to fifth-grade students. Appetite, 60, 226-230. doi: https://doi.org/10.1016/j.appet.2012.09.030
Jaeger, S. R., Vidal, L., Ares, G., Cheang, S. L., and Spinelli, S. (2021). Healthier eating: Covid-19 disruption as a catalyst for positive change. Food Quality and Preference 92, 1-6 doi: https://doi.org/10.1016/j.foodqual.2021.104220
James, G. Witten, D., Hastie, T., and Tibshirani, R. (2013). An introduction to statistical learning. USA: Springer.
Jensen, J. D., and Sommer, I. (2017). Reducing calorie sales from supermarkets - 'silent' reformulation of retailer-brand food product. International Journal of Behavioral Nutrition and Physical Activity, 14(1), 104. doi: https://doi.org/10.1186/s12966-017-0559-y
Kock, N., and Hadaya, P. (2018). Minimum sample size estimation in PLS-SEM: The inverse square root and gamma-exponential methods. Information Systems Journal, 28(1), 227-261. doi: https://doi.org/10.1111/isj.12131
Kraemer H. C., Morgan, G.A., Leech, N.L.,Glinner, J.A.,Vaske, J.J., and Harmon, R.J. (2003). Measures of clinical significance. Journal of the American Academy of Child & Adolescent Psychiatry 42(12), 1524-1529. doi: https://doi.org/10.1097/00004583-200312000-00022
Lafraire, J., Rioux, C., Giboreau, A., and Picard, D. (2016). Food rejections in children: Cognitive and social/environmental factors involved in food neophobia and picky/fussy eating behavior. Appetite, 96(1) 347-357. doi: https://doi.org/10.1016/j.appet.2015.09.008
López-Perez, E. (2020). El 67% del total de personas que murieron por COVID-19 en México tenía diabetes, hipertensión u obesidad. Retrieved from https://www.elfinanciero.com.mx/salud/del-total-de-fallecidos-por-covid-19-67-tenia-diabetes-hipertension-u-obesidad-lopez-gatell/
Mazumbder, B., Almond, D., Park, K., Crimmins, E. M. and Finch, C. E. (2009). Lingering prenatal effects of the 1918 influenza pandemic on cardiovascular disease. Journal of Developmental Origins of Health and Disease, 1(1), 26-34. doi: https://doi.org/10.1017/S2040174409990031
Mejía-Trejo, J. (2019). Mercadotecnia digital: una descripción de las herramientas que apoyan la planeación estratégica de toda innovación de campaña web. Retrieved from https://books.google.com.mx/books/about/Mercadotecnia_Digital.html?id=AUbJDgAAQBAJ&redir_esc=y
Mejía-Trejo, J. (2021). COVID-19 ads on Purchase Intention of Online Consumer Behavior as Business Innovation Activity: A contribution to the Uses and Gratification Theory. Electronic Commerce Research and Applications. In press. doi: https://doi.org/10.1016/j.elerap.2021.101086
Mejía-Trejo, J. (2021b). Análisis cuaitativo comparativo. De nítido (csQCA) a difuso (fsQCA). Teoría y práctica en la administración de la innovación. México: Ed. BUK. Retrieved from https://buk.com.mx/9786079878290/description
Moss, M. (2014). Salt Sugar Fat: How the Food Giants Hooked Us. USA, Random House.
Moscatelli, F., Sessa, F., Valenzano, A., Polito, R. Monda, V., Cibelli, G., …, Daniele, A. (2021) COVID-19: Role of nutrition and supplementation. Nutrients, 13, 976 https://doi.org/10.3390/nu13030976
Nordgard, L., Gronsberg, I. M., and Myhr, A. (2013). GM food, nutrition, safety and Health.SpringerReference. In P. Thompson, & D. Kaplan (Ed.), Encyclopedia of Food and Agricultural Ethics: SpringerReference. Springer-Verlag Berlin: Heidelberg Editors: https://doi.org/10.1007/978-94-007-6167-4_3-2
Nunnally, J. (1978). Psychometric Theory. USA: McGraw-Hill.
Palloni, A., McEniry, M., Huangfu, Y., and Beltran-Sanchez, H. (2020). Impacts of the 1918 flu on survivors' nutritional status: A double quasi-natural experiment.OCT.20-2020.POS ONE. doi: https://doi.org/10.1371/journal.pone.0232805
Pliner, P., and Hobden, K. (1992) Development of a Scale to Measure the Trait of Food Neophobia in Humans. Apetite 19, 105-120. doi: https://doi.org/10.1016/0195-6663(92)90014-w
Pollock, L. (2021). 6-consumer nutrition trends. Retrieved from https://www.fooddive.com/news/6-consumer-nutrition-trends-for-2021/598408/
Ragin, Ch. (2008). Redesigning Social Inquiry. Fuzzy Sets and Beyond. USA: University of Chicago Press.
Rodríguez-Leyva, D., and Pierce, G. N. (2021).The Impact of Nutrition on the COVID-19 Pandemic and the Impact of the COVID-19 Pandemic on Nutrition. Nutrients, 13, 1752. doi: https://doi.org/10.3390/nu13061752
Sarstedt, M., Hair, J. F., Nitzl, C., Ringle, C. M., and Howard, M. C. (2020). Beyond a tandem analysis of SEM and PROCESS: Use of PLS-SEM for mediation analyses! International Journal of Market Research 62(3), 288-299. doi: https://doi.org/10.1177/1470785320915686
Scudellari, M. 2020. How the pandemic might play out in 2021 and beyond. Nature. 584, 22-25 https://www.nature.com/articles/d41586-020-02278-5
Shelden,K. (2020). Impact of Food Tech and Innovation on Nutrition and Health. Let`s eat Healthy. Retrieved from https://www.healthyeating.org/blog/detail/impact-of-food-tech-and-innovation-on-nutrition-and-health
Siegrist, M., Hartmann, C., and Keller, C. (2013). Antecedents of food neophobia and its association with eating behavior and food choices. Food Quality and Preference, 30(2), 293-298. https://doi.org/10.1016/j.foodqual.2013.06.013
Shmueli, G., Sarstedt, M., Hair, J. F., Cheah, J. H., Ting, H., Vaithilingam, S., and Ringle, C. M. (2019). Predictive model assessment in PLS-SEM: Guidelines for using PLSpredict. European Journal of Marketing 53(11), 2322-2347. doi: https://doi.org/10.1108/EJM-02-2019-0189
Steils N., and Obaidalahe, Z. (2020). “Social food”: Food literacy co-construction and distortion on social media. Food Policy. doi: https://doi.org/10.1016/j.foodpol.2020.101932
Straub D., Boudreau,M., and Gefen, D. (2004). Validation guidelines for IS positivist research. Communications of the Association for Information Systems 13(1) 24. doi: https://doi.org/10.17705/1CAIS.01324UNS
United Nations System (UNS,2011)Nutrition and Business. How to engage? United Nations. http://www.unscn.org/files/Publications/SCN_News/SCNNEWS39_10.01_high_def.pdf
United Nations Educational, Scientific and Cultural Organization (UNESCO, 2018). Journalism, Fake News & Disinformation: Handbook for Journalism Education and Training. United Nations Educational, Scientific and Cultural Organization. Retrieved from https://en.unesco.org/fightfakenews
Vanhonacker, F., Kühne, B., Gellynck, X., Guerrero, L., Hersleth, M., and Verbeke, W. (2013). Innovations in traditional foods: Impact on perceived traditional character and consumer acceptance. Food Research International 54, 1828-1835. doi: http://dx.doi.org/10.1016/j.foodres.2013.10.027
Van Trijp, H. C. M. and Van Kleef, E. (2008). Newness, value, and new product performance. Trends in Food Science and Technology.19, 562-573. doi: https://doi.org/10.1016/j.tifs.2008.03.004
Vlad, I. (2021). Nutrition policy in the COVID-19 era: a spotlight on the UK.Aug.03-2021. World Cancer Research Fund International. Retrieved from https://www.wcrf.org/covid-19-propelling-public-health-policies-one-year-since-the-uk-tackling-obesity-strategy/
Wellesley, L., Eis, J., Marijs, C., Vexler, C.,Waites, F. and Benton, T.G. (2020). The Business Case for Investment in Nutrition. Chatham House Report. Retrieved from https://www.chathamhouse.org/sites/default/files/07-08-business-case-investment-nutrition-wellesley-et-al.pdf
World Food Program (WFP, 2020). Overweight and Obesity - in the context of COVID-19. Retrieved from https://www.wfp.org/publications/overweight-and-obesity-context-covid-19
Wheeler, T. (2017). Did technology kill the truth? Retrieved from https://www.brookings.edu/research/did-technology-kill-the-truth/
World Health Organization (WHO, 2021). Obesity and overweight. Retrieved from https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
Yang-Chu, L., Chia-Ko, L., and Yi-Chih, L. (2018). Effects of dietary behavior, and risk perception on internet foods. The International Journal of Organizational Innovation 10 (4), 166-187. https://www.ijoionline.org/attachments/article/56/FINAL%20ISSUE%20VOL%2010%20NUM%204%20APRIL%202018%20SECTION%20B.pdf#page=67
Zucker, M. (2017). Marketing Healthy Food: Strategies To Make Discovery Easier. Retrieved from https://www.forbes.com/sites/matzucker/2017/02/22/marketing-healthy-food/?sh=53494b3b62e8
Publicado
Cómo citar
Número
Sección
Derechos de autor 2021 Juan Mejía-Trejo, Carlos Gabriel Borbón-Morales, Gonzalo Maldonado-Guzmán, Juan Pablo Patiño-Karam

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Para que sean publicados artículos, ensayos y reseñas críticas en Estudios Sociales, la revista debe contar con la aceptación de parte de los autores/autoras de las condiciones siguientes:
1. Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación del trabajo registrado bajo la licencia de Creative Commons Reconocimiento-NoComercial (CC-By-NC) que permite a terceros utilizar lo publicado, siempre y cuando mencionen la autoría del trabajo y a la primera publicación en esta revista.
2. Los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (por ejemplo: incluirlo en un repositorio institucional o publicarlo en un libro) siempre y cuando indiquen, claramente, que el trabajo se publicó por primera vez en esta revista.