Análisis bioeconómico de la pesquería de calamar gigante <em>Dosidicus gigas</em> en el noroeste de México

Bioeconomic analysis of the jumbo squid <em>Dosidicus gigas</em> fishery in northwestern Mexico

https://doi.org/10.24836/es.v29i53.645

Authors

  • Ricardo Urías-Sotomayor FACULTAD DE CIENCIAS DEL MAR. UNIVERSIDAD AUTONOMA DE SINALOA
  • Guillermo Rodríguez-Domínguez FACULTAD DE CIENCIAS DEL MAR. UNIVERSIDAD AUTONOMA DE SINALOA
  • Nicolás Castañeda-Lomas FACULTAD DE CIENCIAS MARINAS. UNIVERSIDAD AUTONOMA DE SINALOA
  • Raúl Pérez-González FACULTAD DE CIENCIAS MARINAS. UNIVERSIDAD AUTONOMA DE SINALOA
  • Gabriel Iván Rivera-Parra Centro Regional de Investigación Pesquera, Instituto Nacional de Pesca y Acuacultura
  • Francisco Javier Martínez-Cordero CIAD

Abstract

Objective: Perform a bioeconomic analysis of the fishery of jumbo squid fishery Dosidicus gigas in northwestern Mexico. Methodology: The population dynamics was modeled using Schaefer´s algorithm (1954). This was with two pairs of values for the intrinsic population growth rate (r). Those represents the increase of a population in a given period. Also represents the carrying capacity: (k); r = 1.23 year-1, k = 243,836 t and r = 1.68-1, k = 190,468 t. Official data were used for total annual catch (1974-2012), and fishing effort (2010-2012), differentiated for small boats and ships, as 2012 is the last year with commercial catches, prior to the collapse that began in 2013 and that remains. Fishing costs and selling prices were obtained through interviews with anglers in the region. The Schaefer´s biological model and the bioeconomic model of two-fleet competing for a stock, with fishing power, costs and product value different for each fleet were appliqued. Results: Total effort in 2012 was close to that needed for the maximum economic yield fMEY in both fleets, and the total authorized effort was operating in suboptimal levels between the effort in fMEY and the effort in bioeconomic equilibrium fBE, reaching a population equilibrium PE at 34 % of k, regardless the values of r and k. The estimated biomass in economic equilibrium BEEC was very low, in the order of 16 % of k for small boats and 32 % of k for ships, with small boats being below the required limit reference point of 20 % of k, established in the National Fishing Chart of Mexico. Limitations: There are no official data available after 2012: The study assumes a constant catchability coefficient. Conclusions: If density-dependent catchability exists, the estimated biomass must have been smaller than the one obtained with the biological model (19 %), meaning that small boats could have already reached their fMEY, at a biomass level that is risky to the stock.

Keywords:

regional development, <em> Dosidicus gigas</em>, jumbo squid, Gulf of California, Schaefer´s model, two fleet model.

Abstract

Objective: Perform a bioeconomic analysis of the fishery of jumbo squid fishery Dosidicus gigas in northwestern Mexico. Methodology: The population dynamics was modeled using Schaefer´s algorithm (1954). This was with two pairs of values for the intrinsic population growth rate (r). Those represents the increase of a population in a given period. Also represents the carrying capacity: (k); r = 1.23 year-1, k = 243,836 t and r = 1.68-1, k = 190,468 t. Official data were used for total annual catch (1974-2012), and fishing effort (2010-2012), differentiated for small boats and ships, as 2012 is the last year with commercial catches, prior to the collapse that began in 2013 and that remains. Fishing costs and selling prices were obtained through interviews with anglers in the region. The Schaefer´s biological model and the bioeconomic model of two-fleet competing for a stock, with fishing power, costs and product value different for each fleet were appliqued. Results: Total effort in 2012 was close to that needed for the maximum economic yield fMEY in both fleets, and the total authorized effort was operating in suboptimal levels between the effort in fMEY and the effort in bioeconomic equilibrium fBE, reaching a population equilibrium PE at 34 % of k, regardless the values of r and k. The estimated biomass in economic equilibrium BEEC was very low, in the order of 16 % of k for small boats and 32 % of k for ships, with small boats being below the required limit reference point of 20 % of k, established in the National Fishing Chart of Mexico. Limitations: There are no official data available after 2012: The study assumes a constant catchability coefficient. Conclusions: If density-dependent catchability exists, the estimated biomass must have been smaller than the one obtained with the biological model (19 %), meaning that small boats could have already reached their fMEY, at a biomass level that is risky to the stock.

Keywords:

regional development, <em> Dosidicus gigas</em>, jumbo squid, Gulf of California, Schaefer´s model, two fleet model.

Downloads

Download data is not yet available.

Author Biographies

Ricardo Urías-Sotomayor, FACULTAD DE CIENCIAS DEL MAR. UNIVERSIDAD AUTONOMA DE SINALOA

ESTUDIANTE DE DOCTORADO

Guillermo Rodríguez-Domínguez, FACULTAD DE CIENCIAS DEL MAR. UNIVERSIDAD AUTONOMA DE SINALOA

PROFESOR INVESTIGADOR

Nicolás Castañeda-Lomas, FACULTAD DE CIENCIAS MARINAS. UNIVERSIDAD AUTONOMA DE SINALOA

PROFESOR INVESTIGADOR

Raúl Pérez-González, FACULTAD DE CIENCIAS MARINAS. UNIVERSIDAD AUTONOMA DE SINALOA

PROFESOR INVESTIGADOR

Gabriel Iván Rivera-Parra, Centro Regional de Investigación Pesquera, Instituto Nacional de Pesca y Acuacultura

PROFESOR INVESTIGADOR

Francisco Javier Martínez-Cordero, CIAD

Laboratorio Economía Acuícola y Prospectiva

References

Anderson, L. G. y Seijo, J. C. (2010). Bioeconomics of fisheries management. Iowa, EE.UU: Wiley-Blackwell Publishing.

Charles, A. T. y Reed, W. J. (1985). A bioeconomic analysis of sequential fisheries: competition, coexistence, and optimal harvest allocation between inshore and offshore fleets. Can. J. Fish. Aquat. Sci., 42: pp. 952-962. doi: 10.1139/f85-120.

Clark, C. W. y Kirkwood, G. P. (1979). Bioeconomic model of the Gulf of Carpentaria prawn fishery. J. Fish. Res. Bd Can., 36: pp. 1304-1312. doi: 10.1139/f79-188.

Comisión Nacional de Acuacultura y Pesca Conapesca (2012). Anuario Estadístico de Acuacultura y Pesca 2012, Mazatlán, México, 385 pp.

Diario Oficial de la Federación (2012). Acuerdo por el que se da a conocer la actualización de la Carta Nacional Pesquera. Publicado el 24 de agosto de 2012, Segunda sección, México, D.F.

Diario Oficial de la Federación. (2014). Acuerdo por el que se da a conocer el Plan de manejo pesquero de calamar gigante (Dosidicus gigas). Publicado el 14 de julio de 2014, Primera Sección, México, D. F.

González-Máynez, V. E. (2018). Estudio acústico del calamar gigante, Dosidicus gigas (D´Orbigny, 1835): Detección, caracterización y evaluación de biomasa en el golfo de California, México. Tesis de Maestría en Ciencias. Centro de Investigaciones Biológicas del Noroeste, S. C. La Paz, México. Recuperado de https://cibnor.repositorioinstitucional.mx/jspui/handle/1001/1441

Gordon, H. S. (1954). The economics of a common property resource: the fishery. J. Polit. Econ., 62: pp. 124-142.

Gulland, J. A. (1983). Fish stock assessment: A manual of basic methods. New York, EE.UU.: J. Wiley & Sons.

Habib, A., Ullah, M. y Duy, N. N. (2014). Bioeconomics of commercial marine fisheries of bay of Bengal: Status and direction. Hindawi Publishing Corporation Economics Research International, Vol. 2014, Art. ID 538074. 10 pp. http://dx.doi.org/10.1155/2014/538074

Hoving, H. J. T., Gilly, W. F., Markaida, U., Benoit?Bird, K. J., Brown, Z. W., Daniel, P., Field, J. C., Parassenti, L. Z., Liu, B. y Campos, B. (2013). Extreme plasticity in life history strategy allows a migratory predator (jumbo squid) to cope with a changing climate. Global Change Biology, 19: pp. 2089-210. doi: 10.1111/gcb.12198.

Instituto Nacional de Pesca (Inapesca) (2006). La pesquería de calamar gigante en México. En: Sustentabilidad y pesca responsable en México, evaluación y manejo. México, D. F., pp. 63-85.

Mackinson, S., Sumaila, U. R. y Pitcher, T. J. (1997). Bioeconomics and catchability: Fish and fishers behavior during stock collapse. Fish. Res., 31: pp. 11-17. https://doi.org/10.1016/S0165-7836(97)00020-9.

Morales-Bojórquez, E., Hernández-Herrera, A., Cisneros-Mata, M. y Nevárez-Martínez, M. O. (2008). Improving estimates of recruitment and catchability of jumbo squid Dosidicus gigas in the Gulf of California, Mexico. Journal of Shellfish Research, 27(5), pp. 1233-1237. doi: 10.2983/0730-8000-27.5.1233.

Oostenbrugge, V. J. A. E.; Powell, J. P.; Smit, J. G. P.; Kraak, S. B. M., Poos, J. J. y Buisman, F. C. (2008). Linking catchability and fisher behavior under Effort Management. Aquatic Living Resources. 21(3), pp. 65-273. doi: 10.1051/alr:2008035.

Robinson, C. J., Gómez, G. J., Markaida, U. y Gilly, W. (2016). Prolonged decline of jumbo squid (Dosidicus gigas) landings in the Gulf of California is associated with chronically low, wind stress and decreased chlorophyll a after El Niño 2009-2010. Fish. Res., 173, pp. 128-138. doi: 10.1016/j.fishres.2015.08.014.

Schaefer, M. (1954). Some aspects of the dynamics of populations important to the management of the commercial marine fisheries. Int. Am. Trop. Tuna Comm. Bull., 1: pp. 27-56.

Seijo, J. C., Defeo, O. y Salas, S. (1997). Fisheries bioeconomics: Theory, modelling and management. FAO Fisheries Technical Paper, No. 368, 108 pp.

Shawyer, M. y Medina-Pizzali, A. F. (2005). El uso de hielo en pequeñas embarcaciones de pesca. FAO Doc. Téc. Pesca, 436: pp. 1-120.

Smith, V. (1969). On models of commercial fishing. Journal of Political Economy, 77(2): pp. 181-198.

Squires, D. S. y Vestergaard, N. (2015). Productivity growth, catchability, stock assessments, and optimum renewable resource use. Marine Policy, 62: pp. 309-317. doi: 10.1016/j.marpol.2015.07.006.

Urías-Sotomayor, R., Rivera-Parra, G. I., Martínez-Cordero, F. J., Castañeda-Lomas, N., Pérez-González, R. y Rodríguez-Domínguez, G. (2018). Stock assessment of jumbo squid fishery Dosidicus gigas in northwest Mexico. Lat. Am. J. Aquat. Res., 46(2): pp. 330-336. doi: 10.3856/vol46-issue2-fulltext-8.

Wang, J., Chen, X., Tanaka, K., Cao, J. y Chen, Y. (2017). Environmental influences on commercial oceanic ommastrephid squids: a stock assessment perspective. Sci. Mar., 81(1): pp. 37-47. doi: http://dx.doi.org/10.3989/scimar.04497.25B.

Zhang, Ch., Qi, D. y Chen, X.J. (2015). Bio-economic model for Dosidicus gigas in the southeast Pacific Ocean. Journal of Guangdong Ocean University. 35(3): pp. 51-56.

Published

11-06-2019

How to Cite

Urías-Sotomayor, R., Rodríguez-Domínguez, G., Castañeda-Lomas, N., Pérez-González, R., Rivera-Parra, G. I., & Martínez-Cordero, F. J. (2019). Bioeconomic analysis of the jumbo squid <em>Dosidicus gigas</em> fishery in northwestern Mexico. Estudios Sociales Revista De Alimentación Contemporánea Y Desarrollo Regional, 29(53). https://doi.org/10.24836/es.v29i53.645

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 > >> 

You may also start an advanced similarity search for this article.